Bounds on the length of a game of Cops and Robbers

نویسنده

  • Bill Kinnersley
چکیده

In the game of Cops and Robbers, a team of cops attempts to capture a robber on a graph G. All players occupy vertices of G. The game operates in rounds; in each round the cops move to neighboring vertices, after which the robber does the same. The minimum number of cops needed to guarantee capture of a robber on G is the cop number of G, denoted c(G), and the minimum number of rounds needed for them to do so is the capture time. It has long been known that the capture time of an n-vertex graph with cop number k is O(n). More recently, Bonato, Golovach, Hahn, and Kratochv́ıl ([3], 2009) and Gavenčiak ([9], 2010) showed that for k = 1, this upper bound is not asymptotically tight: for graphs with cop number 1, the cop can always win within n − 4 rounds. In this paper, we show that the upper bound is tight when k ≥ 2: for fixed k ≥ 2, we construct arbitrarily large graphs G having capture time at least (

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lazy Cops and Robbers Played on Random Graphs and Graphs on Surfaces

We consider a variant of the game of Cops and Robbers, called Lazy Cops and Robbers, where at most one cop can move in any round. The lazy cop number is the analogue of the usual cop number for this game. Lazy Cops and Robbers was recently introduced by Offner and Ojakian, who provided asymptotic upper and lower bounds on the analogue of the cop number of the hypercube. By investigating expansi...

متن کامل

Lazy Cops and Robbers on Hypercubes

We consider a variant of the game of Cops and Robbers, called Lazy Cops and Robbers, where at most one cop can move in any round. We investigate the analogue of the cop number for this game, which we call the lazy cop number. Lazy Cops and Robbers was recently introduced by Offner and Ojakian, who provided asymptotic upper and lower bounds on the lazy cop number of the hypercube. By coupling th...

متن کامل

The game of Overprescribed Cops and Robbers played on graphs

We consider the effect on the length of the game of Cops and Robbers when more cops are added to the game play. In Overprescribed Cops and Robbers, as more cops are added, the capture time (the minimum length of the game assuming optimal play) monotonically decreases. We give the full range of capture times for any number of cops on trees, and classify the capture time for an asymptotic number ...

متن کامل

Lazy Cops and Robbers Played on Graphs

We consider a variant of the game of Cops and Robbers, called Lazy Cops and Robbers, where at most one cop can move in any round. We investigate the analogue of the cop number for this game, which we call the lazy cop number. Lazy Cops and Robbers was recently introduced by Offner and Ojakian, who provided asymptotic upper and lower bounds on the lazy cop number of the hypercube. By investigati...

متن کامل

Lower Bounds for the Capture Time: Linear, Quadratic, and Beyond

In the classical game of Cops and Robbers on graphs, the capture time is defined by the least number of moves needed to catch all robbers with the smallest amount of cops that suffice. While the case of one cop and one robber is well understood, it is an open question how long it takes for multiple cops to catch multiple robbers. We show that capturing ` ∈ O (n) robbers can take Ω (` · n) time,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1706.08379  شماره 

صفحات  -

تاریخ انتشار 2017